MATH2050C Selected Solutions to Assignment 4

Section 3.1

(5d) We have

$$
\left|\frac{n^{2}-1}{2 n^{2}+3}-\frac{1}{2}\right|=\frac{5}{2\left(2 n^{2}+3\right)}<\frac{5}{4 n^{2}}
$$

Therefore, for any number n_{ε} satisfying $\geq \sqrt{[5 / 4 \varepsilon]+1}$, we have

$$
\left|\frac{n^{2}-1}{2 n^{2}+3}-\frac{1}{2}\right|<\varepsilon, \quad \forall n \geq n_{\varepsilon}
$$

So

$$
\lim _{n \rightarrow \infty} \frac{n^{2}-1}{2 n^{2}+3}=\frac{1}{2}
$$

Here $[a]$ is the integer part of a. For instance, $[1.2]=1,[5]=5,[-3.4]=-3$.
(6c) Using

$$
0<\frac{\sqrt{n}}{n+1}<\frac{\sqrt{n}}{n}=\frac{1}{\sqrt{n}}
$$

we see that for all $n \geq\left[1 / \varepsilon^{2}\right]+1$,

$$
\left|\frac{\sqrt{n}}{n+1}-0\right|<\frac{1}{\sqrt{n}}<\varepsilon, \quad \forall n \geq n_{\varepsilon}
$$

where n_{ε} can be chosen to be any natural number $\geq\left[1 / \varepsilon^{2}\right]+1$. So

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{n+1}=0
$$

(17) Use

$$
\frac{2^{n}}{n!}=\frac{2}{1} \frac{2}{2} \frac{2}{3} \frac{2}{4} \cdots \frac{2}{n}<\frac{2}{1} \frac{2}{2} \frac{2}{3} \frac{2}{3} \cdots \frac{2}{3}=2\left(\frac{2}{3}\right)^{n-2}, \quad \forall n \geq 4
$$

It suffices to choose n_{ε} such that

$$
2\left(\frac{2}{3}\right)^{n-2}<\varepsilon
$$

that is,

$$
n_{\varepsilon}>2+\frac{\log (\varepsilon / 2)}{\log (2 / 3)}
$$

Note. In general, one can show that $\lim _{n \rightarrow \infty} a^{n} / n!=0$ for every $a>0$.
(18) It suffices to consider $\varepsilon=x / 2$. Then there is some K such that $\left|x_{n}-x\right|<x / 2, \quad \forall n \geq K$. By writing it as $-x / 2<x_{n}-x<x / 2$, we get $x / 2<x_{n}<3 x / 2$.

Section 3.2 (1d) We write

$$
\frac{2 n^{2}+3}{n^{2}+1}=\frac{2+3 / n^{2}}{1+1 / n^{2}}
$$

Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{2 n^{2}+3}{n^{2}+1} & =\lim _{n \rightarrow \infty} \frac{2+3 / n^{2}}{1+1 / n^{2}} \\
& =\frac{\lim _{n \rightarrow \infty}\left(2+3 / n^{2}\right)}{\lim _{n \rightarrow \infty}\left(1+1 / n^{2}\right)} \quad \text { (by Limit Theorem) } \\
& =\frac{2}{1}=2
\end{aligned}
$$

(5) Both sequences are not bounded, so they cannot be convergent.
(11) (a) Write

$$
\left(3 n^{1 / 2}\right)^{1 / 2 n}=\left(3^{1 / 2}\right)^{1 / n} n^{1 / 4 n}=\left(3^{1 / 2}\right)^{1 / n}(4 n)^{1 / 4 n}\left(4^{-1 / 4}\right)^{1 / n}=\left(3^{1 / 2} 4^{-1 / 4}\right)^{1 / n}(4 n)^{1 / 4 n} .
$$

Use the known facts $\lim _{n \rightarrow \infty} a^{1 / n}=1(a>0)$ and $\lim _{n \rightarrow \infty} n^{1 / n}=1$, we have

$$
\lim _{n \rightarrow \infty}\left(3 n^{1 / 2}\right)^{1 / 2 n}=\lim _{n \rightarrow \infty} a^{1 / n}(4 n)^{1 / 4 n}=\lim _{n \rightarrow \infty} a^{1 / n} \lim _{n \rightarrow \infty}(4 n)^{1 / 4 n}=1 \times 1=1,
$$

where $a=3^{1 / 2} 4^{-1 / 4}$ by Limit Theorem.
Note. Here we have used the trivial fact: $\lim _{n \rightarrow \infty} n^{1 / n}=1$ implies $\lim _{n \rightarrow \infty}(4 n)^{1 / 4 n}=1$.
(b) Let $x_{n}=(n+1)^{1 / \log (n+1)}$. Then $\log x_{n}==\frac{1}{\log (1+n)} \log (1+n)=1$. So this is a constant sequence $\{e, e, e, \cdots\}$ and $\lim _{n \rightarrow \infty} x_{n}=e$.
(12) We have

$$
\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}=\frac{b^{n+1}\left(1+(a / b)^{n+1}\right)}{b^{n}\left(1+(a / b)^{n}\right)}=b \frac{1+(a / b)^{n+1}}{1+(a / b)^{n}} .
$$

Therefore, by Limit Theorem, and $0<a / b<1$,

$$
\lim _{n \rightarrow \infty} \frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}=\lim _{n \rightarrow \infty} b \frac{1+(a / b)^{n+1}}{1+(a / b)^{n}}=b \frac{\lim _{n \rightarrow \infty}\left(1+(a / b)^{n+1}\right)}{\lim _{n \rightarrow \infty}\left(1+(a / b)^{n}\right)}=b .
$$

(as $\lim _{n \rightarrow \infty}(a / b)^{n}=0$ for $a / b \in(0,1)$.)
Note. We have used the fact $\lim _{n \rightarrow \infty} \alpha^{n}=0$ for $\alpha \in(0,1)$. The fact was proved in class and in the text book. You may simply quote it.

Supplementary Exercise

(1) Find the limit of $\left\{x_{n}\right\}, x_{n}=\frac{7 n^{2}+3}{n^{2}-n-5}$. Determine n_{0} explicitly for given $\varepsilon>0$. Recall definition: $\left\{x_{n}\right\}$ converges to x if for each $\varepsilon>0$, there is some n_{0} such that $\left|x_{n}-x\right|<\varepsilon$ for all $n \geq n_{0}$.
Solution We guess the limit is 7 .

$$
\begin{aligned}
\left|\frac{7 n^{2}+3}{n^{2}-n-5}-7\right| & =\left|\frac{7 n+38}{n^{2}-n-5}\right| \\
& =\left|\frac{7 n+38}{1 / 2 n^{2}+1 / 2 n^{2}-n-5}\right| \\
& \leq\left|\frac{7 n+38}{1 / 2 n^{2}}\right|, \quad n \geq 5, \\
& \leq \frac{14}{n}+\frac{76}{n^{2}}
\end{aligned}
$$

As both $14 / n, 76 / n^{2} \rightarrow 0$ as $n \rightarrow \infty, 14 / n+76 / n^{2} \rightarrow 0$ also holds. For $\varepsilon>0$, there is some n_{0} such that $14 / n+76 / n^{2}<\varepsilon$ for all $n \geq n_{0}$. Taking n_{0} further satisfying $n_{0} \geq 5$, we conclude $\left|\left(7 n^{2}+3\right) /\left(n^{2}-n-5\right)-7\right|<\varepsilon$ for $n \geq n_{0}$.
(2) Let $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, a_{n} \neq 0$, and $q(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m}, b_{m} \neq 0$, be two polynomials. Consider the sequence $x_{k}=p(k) / q(k), k \geq 1$, (when k is large, $q(k)$ does not vanish, so you may assume that q is always non-zero). Prove that (a) When $n=m$, $\lim _{k \rightarrow \infty} x_{k}=a_{n} / b_{m}$;
(b) When $n>m$, $\left\{x_{k}\right\}$ does not converge ; and
(c) When $n<m, \lim _{k \rightarrow \infty} x_{k}=0$.
(a) Write

$$
\frac{p(k)}{q(k)}=\frac{k^{n}\left(a_{0} / k^{n}+a_{1} / k^{n-1}+\cdots+a_{n}\right)}{k^{m}\left(b_{0} / k^{m}+b_{1} / k^{m-1}+\cdots+b_{m}\right)}=\frac{a_{0} / k^{n}+a_{1} / k^{n-1}+\cdots+a_{n}}{b_{0} / k^{n}+b_{1} / k^{n-1}+\cdots+b_{n}},
$$

when $m=n$. By Limit Theorem,

$$
\lim _{k \rightarrow \infty} \frac{p(k)}{q(k)}=\frac{\lim _{k \rightarrow \infty}\left(a_{0} / k^{n}+a_{1} / k^{n-1}+\cdots+a_{n}\right)}{\lim _{k \rightarrow \infty}\left(b_{0} / k^{n}+b_{1} / k^{n-1}+\cdots+b_{n}\right)}=\frac{a_{n}}{b_{n}} .
$$

(b) WLOG let $a_{n}, b_{m}>0$. Using the fact that $\lim _{n \rightarrow \infty}\left(a_{0} / k^{n}+a_{1} / k^{n-1}+\cdots+a_{n-1} / k\right)=0$, for $\varepsilon>0$, there is some k_{0} such that

$$
\left|a_{0} / k^{n}+a_{1} / k^{n-1}+\cdots+a_{n-1} / k-0\right|<\varepsilon, \quad \forall n \geq n_{0} .
$$

Choose $\varepsilon=a_{n} / 2$, we have

$$
\left|a_{0} / k^{n}+a_{1} / k^{n-1}+\cdots+a_{n-1} / k-0\right|<\frac{a_{n}}{2}, \quad \forall k \geq k_{0}
$$

It follows that $a_{0} / k^{n}+a_{1} / k^{n-1}+\cdots+a_{n-1} / k+a_{n}>a_{n} / 2$. Similarly we can find k_{1} such that $b_{0} / k^{m}+b_{1} / k^{m-1}+\cdots b_{m-1} / k+b_{m}<2 b_{m}$ for all $k \geq k_{1}$. Thus,

$$
\frac{p(k)}{q(k)}=\frac{k^{n}\left(a_{0} / k^{n}+a_{1} / k^{n-1}+\cdots+a_{n}\right)}{k^{m}\left(b_{0} / k^{m}+b_{1} / k^{m-1}+\cdots+b_{m}\right)}>\frac{k^{n} a_{n} / 2}{k^{m} 2 b_{m}}=\frac{a_{n}}{4 b_{m}} k^{n-m}
$$

for all $k \geq \max \left\{k_{0}, k_{1}\right\}$. Now, given $M>0$, it is clear there is some K such that

$$
\frac{p(k)}{q(k)} \geq \frac{a_{n}}{4 b_{m}} k^{n-m}>M
$$

for all $k \geq K$. Indeed, it suffices to choose to be any natural number satisfying

$$
K \geq k_{0}, k_{1},\left(\frac{4 b_{m} M}{a_{n}}\right)^{1 /(n-m)}
$$

We conclude that $\left\{x_{k}\right\}$ is not convergent, in fact,

$$
\lim _{k \rightarrow \infty} x_{k}=\infty .
$$

(When $a_{n} b_{m}<0$, it is $-\infty$ instead of ∞.)
(c) Similar to (a) we have

$$
\frac{p(k)}{q(k)}=\frac{k^{n}\left(a_{0} / k^{n}+a_{1} / k^{n-1}+\cdots+a_{n}\right)}{k^{m}\left(b_{0} / k^{m}+b_{1} / k^{m-1}+\cdots+b_{m}\right)}=\frac{1}{k^{m-n}} \frac{a_{0} / k^{n}+a_{1} / k^{n-1}+\cdots+a_{n}}{b_{0} / k^{m}+b_{1} / k^{m-1}+\cdots+b_{m}} .
$$

By Product Rule,

$$
\lim _{k \rightarrow \infty} \frac{p(k)}{q(k)}=\lim _{k \rightarrow \infty} \frac{1}{k^{m-n}} \lim _{k \rightarrow \infty} \frac{a_{0} / k^{n}+a_{1} / k^{n-1}+\cdots+a_{n}}{b_{0} / k^{m}+b_{1} / k^{m-1}+\cdots+b_{m}}=0 \times \frac{a_{n}}{b_{m}}=0 .
$$

(3) Suppose that $x_{n} \rightarrow x, x_{n} \geq 0$. Show that $x_{n}^{p / q} \rightarrow x^{p / q}$ for $p, q \in \mathbb{N}$.

Solution Assume $x>0$. We show $x_{n}^{1 / q} \rightarrow x^{1 / q}$ if $x_{n} \rightarrow x$. Indeed, from

$$
a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+\cdots+b^{n-1}\right),
$$

we get

$$
x_{n}^{1 / q}-x^{1 / q}=\frac{x_{n}-x}{x_{n}^{1-1 / q}+x_{n}^{1-2 / q} x^{1 / q}+\cdots+x^{1-1 / q}} .
$$

For $\varepsilon=x / 2$, there is some n_{0} such that $\left|x_{n}-x\right|<x / 2$, which implies $x_{n} \geq x / 2$ for $n \geq n_{0}$. Since there are q-many terms in the denominator, $x_{n}^{1-1 / q}+x_{n}^{1-2 / q} x^{1 / q}+\cdots+x^{1-1 / q} \geq q \times(x / 2)^{1-1 / q} \equiv$ α. It follows that $\left|x_{n}^{1 / q}-x^{1 / q}\right| \leq \frac{1}{\alpha}\left|x_{n}-x\right|$ for $n \geq n_{0}$. For $\alpha \varepsilon>0$, there is n_{1} such that $\left|x_{n}-x\right|<\alpha \varepsilon$ for all $n \geq n_{1}$. Putting together, for $n \geq n_{2} \equiv \max \left\{n_{0}, n_{1}\right\}$,

$$
\left|x_{n}^{1 / q}-x^{1 / q}\right| \leq \frac{1}{\alpha}\left|x_{n}-x\right|<\frac{1}{\alpha} \times \alpha \varepsilon=\varepsilon .
$$

By the Product Rule, as $x_{n}^{1 / q} \rightarrow x^{1 / q}, x_{n}^{p / q} \rightarrow x^{p / q}$ too.
When $x=0$, for $\varepsilon^{q / p}>0$, there is some n_{0} such that $0 \leq x_{n}<\varepsilon^{q / p}$ for all $n \geq n_{0}$. It follows that $0 \leq x_{n}^{p / q}<\varepsilon$ for $n \geq n_{0}$, done.

